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† Dipartimento di Fisica, Università Roma Tre and INFN–Sezione di Roma Tre, Via della Vasca
Navale 84, 00146 Rome, Italy
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Abstract. A method is presented for finding the Lie point symmetry transformations acting
simultaneously on difference equations and lattices, while leaving the solution set of the
corresponding difference scheme invariant. The method is applied to several examples. The
found symmetry groups are used to obtain particular solutions of differential-difference equations.

1. Introduction

Lie groups have long been used to study differential equations. As a matter of fact, they
originated in that context [1,2]. They have been put to good use to solve differential equations,
to classify them and to establish properties of their solution spaces [3–8].

Applications of Lie group theory to discrete equations, such as difference equations,
differential-difference equations or q-difference equations, are much more recent [9–37].

Several different approaches are being pursued. One philosophy is to consider a given
system of discrete equations on a given fixed lattice and to search for a group of transformations,
taking solutions into solutions, while leaving the lattice invariant. Within this philosophy
different approaches differ by the restrictions imposed on the transformations and by the
methods used to find the symmetries. One thing that is clear is that within this philosophy it is
necessary to generalize the concept of point symmetries for difference equations, if we wish
to recover all point symmetries of a differential equation in the continuous limit [9–26].

A different philosophy is to consider a difference equation and a lattice as two relations
involving a fixed number of points, in which we give the values of the independent and
dependent variables, say x−, x, x+ and u−, u, u+ respectively. The group transformations act
on the equation and on the lattice. This philosophy was mainly developed by Dorodnitsyn and
collaborators [27–33]. In this approach, the given object was a Lie group and its Lie algebra.
Invariants of this Lie group, depending on x and u, calculated at a predetermined number of
points were obtained. They were used to obtain invariant equations and lattices. The emphasis
was on discretizing differential equations while preserving all of their point symmetries, or at
least most of them.

The purpose of this paper is to combine the two philosophies. More specifically, we will
consider given equations on given lattices, but the lattice will also be given by some equation.
We will then look for Lie point transformations, acting on both equations, and leaving the
common solution sets of both equations invariant.
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In section 2 we develop the formalism necessary for calculating simultaneous symmetries
of difference or differential-difference equations and lattices. Section 3 is devoted to examples
of symmetries of purely difference equations, both linear and nonlinear ones. In section 4 we
also consider examples, this time of differential-difference equations. Some conclusions are
drawn in the final section 5.

2. Symmetries of differential-difference equations

2.1. The differential-difference scheme

In this paper we shall only consider a restricted class of problems, for reasons of simplicity
and clarity. However, the formalism involved can easily be extended to quite general systems
of equations.

Thus we shall consider one scalar function u(x, t) of two variables only. The variable
t is continuous and varies in some interval I ⊂ R. The variable x is also continuous and
varies in some interval Ĩ ⊂ R. However, x will be ‘sampled’ in a set of discrete points
{. . . , xn−2, xn−1, xn, xn+1, . . .}. The points xk are not necessarily equally spaced.

We shall study the symmetries of a pair of equations, which we postulate to have the form

E = E(t, {xk}n+n2
k=n−n1

, {uk}n+n2
k=n−n1

, un,t , un,tt ) = 0 (1)

 = (t, {xk}n+n4
k=n−n3

, {uk}n+n4
k=n−n3

) = 0 ni � 0. (2)

We have k, n, ni ∈ Z, all ni are finite. Equation (1) is a differential equation in t and a
difference equation in x, since we define

xn ≡ x xn−1 ≡ xn − h−(xn, t)
xn+1 ≡ xn + h+(xn, t) xn+2 ≡ xn + h+(xn, t) + h+(xn+1, t), . . .

un ≡ u(xn, t) un+k ≡ u(xn+k, t).

(3)

At this stage we are not imposing any boundary conditions, so we assume that equations (1)
and (2) can be shifted arbitrarily to the left and to the right. Thus, equations (1) and (2) involve
any n1 + n2 + 1 or n3 + n4 + 1 neighbouring points, respectively.

The fact that (1) involves only first and second derivatives and that there are no derivatives
in (2) is also for simplicity only. The same goes for the fact that derivatives are evaluated at
the reference point n only (i.e. we do not consider terms such as ∂u(xn+1, t)/∂t).

In order to be able to consider equations (1) and (2) as a difference scheme, we must be
able to obtain xn+N, un+N and also xn−M, un−M (N = max(n2, n4),M = max(n1, n3)). In
other words, we impose two conditions:

det

(
∂(E,)

∂(xn+N, un+N)

)
	≡ 0 det

(
∂(E,)

∂(xn−M, un−M)

)
	≡ 0. (4)

If necessary, when calculating (4) we shift one of the equations, (1) or (2), to the left or right,
so that the same values n +N and n−M figure in both equations.

In general, we do not require that a continuous limit should exist. If it does, then
equation (1) should go into a differential equation in x and t and equation (2) should go into
the identity 0 = 0. When taking the continuous limit it is convenient to introduce ‘discrete
derivatives’, e.g.

u,x = un+1 − un
xn+1 − xn u,x = un − un−1

xn − xn−1
u,xx̄ = 2

u,x −u,x
xn+1 − xn−1

(5)

etc. In the continuous limit we have h+(xk, t) → 0, h−(xk, t) → 0, xn+k → x, uk → u(x)

and the discrete derivatives go to the continuous ones.
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A solution of the system (1), (2) will have the form xn = �(n, c1, . . . , ck), un =
f (xn, c1, . . . , ck) where c1, . . . , ck are constants needed to satisfy initial conditions and the
functions � and f are such that (1) and (2) become identities.

As a clarifying example of equations (1) and (2), let us consider a three-point purely
difference scheme, namely

E = un+1 − 2un + un−1

(xn+1 − xn)2 − un = 0 (6)

 = xn+1 − 2xn + xn−1 = 0. (7)

The equation  = 0 determining the lattice has constant coefficients and its solution is
xn = hn + x0, where h = h+ = h− and x0 are constants. The equation E = 0 on this
lattice also has constant coefficients (since we have xn+1 − xn = h) and its general solution is

u(xn) = c1K
xn
+ + c2K

xn− K± =
(

2 + h2 ± h
√

4 + h2

2

)1/h

. (8)

In the continuous limit we obtainE = 0 → u′′−u = 0, = 0 → 0 = 0, u(x) = c1ex+c2e−x .
Equation (7) happens to determine a regular (equally spaced) lattice. Below we shall see
examples of other lattices.

2.2. Symmetries of differential-difference schemes

Let us consider a one-parameter group of local point transformations of the form

x̃ = �λ(x, t, u) t̃ = �λ(t) ũ(x̃, t̃ ) = �λ(x, t, u). (9)

We shall require that they leave the system of equations (1), (2) invariant on the solution set of
this system. Since we are interested in continuous transformations (of discrete systems), we
use an infinitesimal approach and write the transformations up to order λ as

x̃ = x + λξ(x, t, u(x, t)) (10)

t̃ = t + λτ(t) (11)

ũ(x̃, t̃ ) = u(x, t) + λφ(x, t, u(x, t)) |λ| � 1. (12)

This assumption is quite restrictive. Not only do we consider only point transformations,
but we require that both t and t̃ are continuous. No dependence, explicit or implicit, on
the discretely sampled variable x is allowed. Indeed, once the lattice equation is solved, we
obtain a discrete set of points {xn} and this would introduce discrete values t̃ = t̃n, which
we do not allow. Moreover, the x-dependence of t , if allowed, remains unspecified, since
the considered equations involve only time derivatives. This would lead to wrong results, i.e.
infinite-dimensional transformation groups that do not take solutions into solutions.

We must now prolong the action of the transformation (10) to the prolonged space. This
space includes the derivatives ut (x, t), utt (x, t), the shifted points x± = xn±1, . . . and the
function at shifted points u± = u(x±, t), . . . .

It is convenient to express the invariance condition for the system (1), (2) in terms of a
formalism involving vector fields and their prolongations. The vector field itself has the form

X̂ = ξ(x, t, u)∂x + τ(t)∂t + φ(x, t, u)∂u (13)

with ξ, τ and φ the same as in equations (10)–(12). The prolongation of the vector field (13)
acting on the system (1), (2) is

pr(M+N)X̂ = X̂ +
n+N∑

k=n−M
ξ(xk, t, uk)∂xk +

n+N∑
k=n−M

φ(k)∂uk + φt∂ut + φtt ∂utt (14)
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with

φ(k) = φ(xk, t, uk) (15)

φt = Dtφ − (Dtξ)ux − (Dtτ )ut (16)

φtt = Dtφt − (Dtξ)uxt − (Dtτ )utt . (17)

Thus the prolongation coefficients φt , φtt are the same as for differential equations; the
coefficients φ(k) are as in [10–27].

The requirement that the system (1), (2) be invariant under the considered one-parameter
group translates into the requirement

prX̂ E|E=0,=0 = 0 prX̂ |E=0,=0 = 0. (18)

In equations (18), once the equations (1), (2) are taken into account, all involved variables are
to be considered as independent. Equations (18) are thus the determining equations for the
infinitesimal coefficients ξ, τ and φ.

For purely difference equations (ut and utt absent from (1)) the procedure is the following.

(1) Extract un+N and xn+N (or un−M and xn−M ) from equations (1) and (2) and substitute into
equation (18). This provides us with two functional equations for ξ, τ and φ.

(2) Assuming an analytical dependence of ξ, τ and φ on their own variables, we convert
these two equations into differential equations by differentiating them with respect to
appropriately chosen variables un+k and xn+k . Use the fact that the coefficients ξ, τ and
φ depend on x and u evaluated at one point only to simplify the equations. Differentiate
sufficiently many times to obtain differential equations that we can integrate.

(3) Solve the differential equations, substitute back into the two original functional equations
and solve them.

For differential-difference equations, we solve for the highest derivative (in our case utt )
and for either xn+N or un+N (or xn−M or un−M ) and substitute into equation (18). In this case,
the determining equation will be a polynomial expression in the derivatives of u with respect
to t (in our case ut only) and all their coefficients must vanish. For the remaining terms, which
depend on shifted variables, we proceed as in the case of purely difference equations.

3. Examples of symmetries of difference equations

We shall give several examples of the calculation of symmetries acting on difference schemes.
They will involve either three or four points on a lattice. Equations (1) and (2) simplify to

E(x, x−, x+, x++, u, u−, u+, u++) = 0 (19)

(x, x−, x+, x++, u, u−, u+, u++) = 0 (20)

for a four-point scheme. A three-point scheme is obtained if E and  are independent of x++

and u++. Here x = xn is the reference point and x− = xn−1, x+ = xn+1 and x++ = xn+2 and
similarly for u.

The prolongation (14) of the vector field simplifies to

prX̂ = ξ(x, u)∂x + φ(x, u)∂u + ξ(x−, u−)∂x− + ξ(x+, u+)∂x+ + φ(x−, u−)∂u−

+ξ(x++, u++)∂x++ + φ(x+, u+)∂u+ + φ(x++, u++)∂u++ (21)

(for three-point schemes we drop the x++ and u++ terms).
A symmetry classification of three-point schemes was provided in a recent paper [35].

Here we solve a different problem. The equations and lattices are given and we determine
their symmetries.
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3.1. Polynomial nonlinearity on a uniform lattice

Let us consider the nonlinear ordinary differential equation

uxx − uN = 0 N 	≡ 0, 1. (22)

A straightforward calculation shows that for N 	≡ −3 equation (22) is invariant under a two-
dimensional Lie group, the Lie algebra of which is spanned by

P̂ = ∂x D̂ = (N − 1)x∂x − 2u∂u. (23)

For N = −3 the symmetry algebra is sl(2,R) with a basis

P̂ = ∂x D̂ = 2x∂x + u∂u Ĉ = x2∂x + xu∂u. (24)

A natural way to discretize equation (22) is to use a uniform lattice and put

E = u+ − 2u + u−
(x+ − x)2 − uN = 0 (25)

 = x+ − 2x + x− = 0. (26)

Let us now apply the symmetry algorithm (18). The condition prX = 0 for E = 0,  = 0
implies

ξ(2x − x−, (x − x−)2uN + 2u− u−)− 2ξ(x, u) + ξ(x−, u−) = 0. (27)

Differentiating first by ∂u− , then by ∂u, we obtain

−ξu+(2x − x−, (x − x−)2uN + 2u− u−) + ξu−(x−, u−) = 0 (28)

[N(x − x−)2uN−1 + 2]ξu+u+(2x − x−, (x − x−)2uN + 2u− u−) = 0. (29)

Equation (29) implies that ξ is linear in u

ξ(x, u) = a(x)u + b(x). (30)

Equation (28) reduces to a(x+) = a(x), i.e. a is a constant. Substituting these results into
equation (27) we obtain

a[u+ − 2u + u−] + b(x+)− 2b(x) + b(x−) = 0. (31)

This implies a = 0 and

b(x+)− 2b(x) + b(x−) = 0. (32)

Differentiating successively with respect to x and x− we find bx+x+(x+) = 0, i.e.

b(x) = b1x + b0. (33)

Thus, the invariance of equation (26) implies ξ = b1x + b0 with b1, b0 constants. The
function φ(x, u) is restricted by the requirement prXE = 0 forE = 0, = 0. This invariance
condition is given by

φ(2x − x−, (x − x−)2uN + 2u− u−)− 2φ(x, u) + φ(x−, u−)
−(x − x−)2[Nφ(x, u)uN−1 + 2b1u

N ] = 0. (34)

We successively differentiate this equation with respect to u− and u and we obtain

−φu+(x+, u+) + φu−(x−, u−) = 0 (35)

φu+u+(x+, u+) = 0. (36)

These two equations require that φ = φ1u + φ0(x) with φ1 a constant. Substituting back into
equation (34) we obtain the remaining determining equation

φ0(2x − x−)− 2φ0(x) + φ0(x−)− (x − x−)2[(N − 1)φ1 + 2b1]uN

−N(x − x−)2φ0u
N−1 = 0. (37)
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Since we have N 	≡ 0, 1 equation (37) implies φ0(x) = 0 and φ1(1 − N) = 2b1. Finally,
we obtain the symmetry algebra of the difference system (25), (26). It is two dimensional
and coincides with the algebra (23) of the differential equation (22), the continuous limit of
equation (25).

Notice that the case N = −3 is not distinguished from the generic case. As a matter of
fact, no difference equation on a uniform lattice can be invariant under the SL(2,R) group
corresponding to the algebra (24). A basis for the difference invariants of this algebra in the
space {x, x−, x+, u, u−, u+} is

ρ1 = h−u+

(h+ + h−)u
ρ2 = h+u−

(h+ + h−)u
ρ3 = h+h−

(h+ + h−)u2
(38)

where h+ and h− are defined as h+ = x+ − x, h− = x − x−, and no function of x, x+ and x−
alone can be set equal to a constant. An SL(2,R) invariant scheme must be constructed from
these invariants. For instance, an invariant scheme approximating equation (22) for N = −3
is

h−(u+ − u)− h+(u− u−)
h+h−(h+ + h−)

= 2h+h−
(h+ + h−)2

1

u3
h−u+ = h+u−. (39)

3.2. Discrete versions of linear second-order equations

3.2.1. Discretization of uxx = u. Consider the ordinary differential equation

uxx = u. (40)

Like every second-order linear ODE, it is invariant underSL(3,R)with the Lie algebra realized
in this case by the vector fields

X̂1 = ∂x X̂2 = u∂u X̂3 = ex∂u X̂4 = e−x∂u X̂5 = e2x(∂x + u∂u)

X̂6 = uex(∂x + u∂u) X̂7 = e−2x(∂x − u∂u) X̂8 = ue−x(∂x − u∂u).
(41)

A very straightforward discretization of equation (40) on a uniform lattice is

u+ − 2u + u−
(x+ − x)2 = u (42)

x+ − 2x + x− = 0. (43)

Applying the same procedure to the system (42), (43) that was applied to the system (25),
(26) (with N 	≡ 0, 1), we again obtain a two-dimensional symmetry algebra

P̂ = ∂x D̂ = u∂u. (44)

At first glance the absence of symmetries of the form φ(x)∂u, representing the linear
superposition principle, seems surprising. However, viewed as a system of two equations,
the system (42), (43) is really nonlinear. Equation (43) defines a uniform lattice with an
arbitrary step h = x+ − x = x − x−, where the step h can be scaled by a dilatation of x.

An alternative approach to the system (42), (43) is to first integrate equation (43) once,
thus fixing the step on the x-axis. The system (42), (43) is then replaced by the equation

u+ − 2u + u−
h2

= u (45)

where h = x+ − x = x − x− is a fixed (non-scalable) constant. The symmetry algorithm
described in section 2 and applied in section 3.1 yields a four-dimensional symmetry algebra

P̂ = ∂x D̂ = u∂u Ŝ1 = Kx+∂u Ŝ2 = Kx−∂u (46)
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with K± as in equation (8). The symmetries Ŝ1, Ŝ2 represent the linear superposition formula
for the linear system (45).

We mention that equation (40) (and any linear ODE) can be discretized in a manner that
exactly preserves all of its solutions. To do this we must preserve a subalgebra of the symmetry
algebra of the ODE, containing the elements corresponding to the linear superposition formula.
In our case these are X̂3 and X̂4 of equation (41). Let us consider the subalgebra {X̂1, . . . , X̂6}.
Its second-order discrete prolongation allows no invariants. It does, however, allow an invariant
manifold, namely

I = ue−x(e−2x+ − e−2x−) + u+e−x+(e−2x− − e−2x) + u−e−x−(e−2x − e−2x+) = 0. (47)

The expression

S = e−2x − e−2x−

e−2x+ − e−2x
(48)

is an invariant on the manifold (47).
Indeed, we have

(X̂1 + 3X̂2)I = 0 X̂3I = X̂4I = X̂5I = X̂6I = 0 X̂2I = I
X̂iS = 0 (i = 1, . . . , 5) X̂6S = 2I

(e−2x+ − e−2x)2

(49)

so we have

X̂iI |I=0 = 0 X̂iS|I=0 = 0 i = 1, . . . , 6. (50)

A uniform lattice, to first order in h and an equation with (40) as its continuous limit, is obtained
by putting

S = 1
e3xI

2h3
= 0. (51)

Equation (51), or I = 0, has u = ex and u = e−x as solutions and the general solution is

u = c1ex + c2e−x (52)

just as in the continuous case (40).
To check this, let us solve the system S = 1, I = 0 directly, with I and S given in

equations (47) and (48), respectively. We linearize S = 1 by a change of variables and obtain

z = e−2x z+ − 2z + z− = 0. (53)

The solution is

zn = c3n + c4 xn = − 1
2 ln(c3n + c4) (54)

so that the lattice in x is logarithmic (c3 and c4 are integration constants). On this lattice
equation (47) reduces to

2u
√
c3n + c4 − u+

√
c3(n + 1) + c4 − u−

√
c3(n− 1) + c4 = 0. (55)

To solve this linear equation we put u(x) = exf (x) or, on the lattice

u(xn) = 1√
c3n + c4

f (xn) (56)

so that f (x) satisfies

f (x+)− 2f (x) + f (x−) = 0. (57)

We write the general solution of equation (57) as

f (xn) = f ◦ x(n) = An + B. (58)
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By rewriting A and B in terms of the new integration constants c1 and c2, i.e. by putting
A = c2 c3 and B = c2 c4 + c1, we obtain the general solution of the system (51) as

u = c1√
c3n + c4

+ c2
√
c3n + c4 = c1ex + c2e−x (59)

in full agreement with equation (52).

3.2.2. Discrete version of uxx = 1. Let us consider the simplest three-point difference
scheme for the ODE uxx = 1

u+ − 2u + u−
(x+ − x)2 = 1 x+ − 2x + x− = 0. (60)

Applying the prolonged vector field to these equations and eliminating x+ and u+, we obtain
two equations

ξ(2x − x−, (x − x−)2 + 2u− u−)− 2ξ(x, u) + ξ(x−, u−) = 0 (61)

φ(2x − x−, (x − x−)2 + 2u− u−)− 2φ(x, u) + φ(x−, u−)
= 2(x − x−)[ξ(2x − x−, (x − x−)2 + 2u− u−)− ξ(x, u)]. (62)

We first concentrate on equation (61). Taking the second derivative with respect to u and u−
we find that ξ is linear in u. Substituting back into (61) and differentiating with respect to x
and x− we find

ξ(x, u) = α
(
u− x2

2

)
+ β1x + β0 (63)

where α, β1 and β0 are constants. Substituting ξ into equation (62) and solving for φ in a
similar manner, we obtain

φ(x, u) = α
(
xu− x3

2

)
+ c

(
u− x2

2

)
+ β1x

2 + β2x + β3. (64)

Finally, a basis for the symmetry algebra of the system (60) is

X̂1 = ∂x X̂2 = ∂u X̂3 = x∂u X̂4 = x∂x + x2∂u

X̂5 =
(
u− x2

2

)
∂u X̂6 =

(
u− x2

2

)
∂x +

(
u− x2

2

)
x∂u.

(65)

It is easy to check that this Lie algebra is isomorphic to the general affine Lie algebra gaff(2,R).
This is the symmetry algebra of the scheme [35]

w+ − 2w + w− = 0 t+ − 2t + t− = 0. (66)

Indeed the system (60) is transformed into (66) by putting

u = w +
t2

2
x = t. (67)

3.3. Discrete versions of the equation uxxx = 0

The symmetry algebra of the ODE uxxx = 0 is seven dimensional. A basis for this algebra is

X̂1 = ∂x X̂2 = ∂u X̂3 = x∂x X̂4 = u∂u X̂5 = x∂u
X̂6 = x2∂u X̂7 = x2∂x + 2xu∂u.

(68)

The generators X̂2, X̂5 and X̂6 correspond to the linear superposition principle. We can add
u = c2x

2 + c1x + c0 to any solution and indeed, this itself is the general solution.
Let us now consider discretizations of this ODE.
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3.3.1. Discretization on a uniform lattice. We consider the system

E = u++ − 3u+ + 3u− u− = 0 (69)

1 = x+ − 2x + x− = 0. (70)

The lattice is uniform, since the general solution of (70) is xn = hn+x0 with h and x0 constants.
Equation (70) must be shifted once to the right to obtain x++.

The prolonged vector fields have the form (21). We apply the same method as in section 3.2
to obtain the symmetry algebra of the system (69), (70). The result is a six-dimensional
Lie algebra generated by {X̂1, X̂2, X̂3, X̂4, X̂5, X̂6} of equation (68). The system hence has
exactly the same solutions as the ODE uxxx = 0; however, the lattice is not invariant under the
projective transformations generated by X̂7.

3.3.2. Discretization on a four-point lattice. We take equation (69) on the lattice

2 = x++ − 3x+ + 3x − x− = 0. (71)

The lattice given by equation (71) is not uniform but satisfies xn = L2n
2 + L1n + L0, where

Li are constants. We assume L2 	≡ 0, otherwise the lattice is the same as for 1 = 0.
The symmetry algebra in this case is given by

{X̂1, X̂2, X̂3, X̂4, X̂5, Ŷ = u∂x} (72)

with X̂1, . . . , X̂5 as in equation (68). Thus X̂6 of (68) is absent. This reflects the fact that
u = x2 is not an exact solution on the lattice 2 = 0. Indeed, if we take L2 = 1 and
L1 = L0 = 0 in equation (68) we have u = n4, which would solve a fourth-order equation,
not, however, equation (69).

3.3.3. Discretization preserving the entire symmetry group. The third prolongation of the al-
gebra (68) acts on an eight-dimensional space with coordinates (x, x+, x++, x−, u, u+, u++, u−).
If the seven prolonged fields are linearly independent, they will allow only one invariant. This
invariant can be calculated directly. It lies entirely in the subspace {x, x+, x++, x−} and is given
by the anharmonic ratio of four points, namely

(x++ − x)(x+ − x−)
(x − x−)(x++ − x+)

= K. (73)

This is the invariant of the projective action of sl(2,R) on the real line R, given by the ∂x part
of the subalgebra {X̂1, X̂3, X̂7} of the algebra (68). Equation (73) provides us with a lattice.
The invariant equation is obtained by requiring that the third prolongation of (X̂1, . . . , X̂7) be
linearly connected on some manifold. This manifold is given by the condition

I = −(u+ − u)(x++ − x)(x − x−)(x++ − x−) + (u++ − u)(x+ − x)(x − x−)(x+ − x−)
+(u− u−)(x+ − x)(x++ − x)(x++ − x+) = 0. (74)

It is easy to check that I is indeed invariant, i.e.

pr(3)X̂i I |I=0 = 0 i = 1, . . . , 7. (75)

Finally, a difference scheme, invariant under the group generated by the algebra (68), having
uxxx = 0 as a continuous limit, is given by

u,xxx̄ = 6I

(x++ − x−)(x++ − x)(x++ − x+)(x+ − x−)(x+ − x)(x − x−)
= 0 (76)

and equation (71).
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We define discrete derivatives as

u,x = u+ − u
x+ − x u,x̄ = u++ − u+

x++ − x+
u,x = u− u−

x − x−
u,xx̄ = 2

ux̄ − ux
x++ − x u,xx = 2

ux − ux
x+ − x−

u,xxx̄ = 3
uxx̄ − uxx
x++ − x−

.
(77)

Any four solutions of a Riccati equation satisfy equation (73) and we use this fact to solve
this equation. Indeed, consider, for example, the Riccati equation

ẋ = Ax2 + Bx + C B2 − 4AC > 0 (78)

where A, B and C are real constants and A 	≡ 0. The general solution of equation (78) is

x = x1 + x2ωeA(x1−x2)t

1 − ωeA(x1−x2)t
x1,2 = −B ± √

B2 − 4AC

2A
. (79)

Let us take ω = n, x1 = α, x2 = β and eA(x1−x2)t = γ . A solution of equation (79) is

x ≡ x(n) = αn + β

γn + δ
α, β, γ, δ = const αδ − βγ = 1. (80)

Substituting into equation (73) we find K = 4. The value K = 4 is also required to obtain
the correct continuous limit. Indeed, putting x+ − x = εσ1, x − x− = εσ2, x++ − x+ = εσ3,
σi ∈ R and ε → 0 we have

ε2(σ1 + σ3)(σ1 + σ2)

ε2σ2σ3
= K (81)

and for σ1 = σ2 = σ3 we have K = 4 and also u,x → u′, u,x̄ → u′, u,x → u′, u,xx̄ → u′′,
u,xx → u′′ and u,xxx̄ → u′′′, where the primes denote (continuous) derivatives.

Plots of x(n) for lattices (70), (71) and (80) are shown in figures 1, 2 and 3, respectively.
The expression (80) is singular for γ = δ/n, so such values of γ are to be avoided.

4. Examples for differential-difference equations

In this section we shall need the complete formalism of section 2, in particular the vector field
prolongation (14)–(17).

4.1. Symmetries of the discrete Volterra equation

The discrete Volterra equation [17] on a uniform lattice is represented by the two equations

E ≡ ut + u
u+ − u−
x+ − x−

= 0 (82)

 ≡ x+ − 2x + x− = 0 (83)

where t is a continuous variable, u = u(x, t) and ut = ∂u/∂t . The Volterra equation is
integrable [17] but we make no use of that here.

The invariance condition for the lattice (83) is

ξ(2x − x−, t, u+)− 2ξ(x, t, u) + ξ(x−, t, u−) = 0. (84)

In contrast to the cases in section 3, the values u+, u and u− in equation (84) are independent,
since the equationE = 0 involvesut (in addition tou+, u andu−). Differentiating equation (84)
with respect to, for example, u we obtain ξu = 0. Differentiating with respect to x− and then
x, we obtain ξx+x+(x+, t) = 0. The function ξ(x, t, u) hence reduces to

ξ = a(t)x + b(t) (85)
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Figure 1. Variable x as a function of n for the lattice (70), xn = hn + x0 (h = 1, x0 = 5).

with a(t) and b(t) so far arbitrary functions of t .
Invariance of equation (82) implies

φt + φ
u+ − u−
x+ − x−

+
u

x+ − x (φ
(+) − φ(−))− u(u+ − u−)

(x+ − x−)2
(ξ (+) − ξ (−))|E==0 = 0. (86)

The coefficients in the prolongation satisfy

φt = φt + (φu − τt )ut − ξtux − ξuutux − τuu2
t (87)

φ(±) = φ(x±, t, u(x±, t)). (88)

We substitute (85), (87) and (88) into equation (86) and eliminate ut (x, t) and x+ using
equations (82) and (83). The only term involving ux is in φt . Its coefficient ξt must vanish and
we find ȧ = ḃ = 0 in the expression (85).

The remaining determining equation is{
φt + [φ − u(φu − τt − au)]u+ − u−

x+ − x−

+
u

x+ − x−
[φ(x+, t, u(x+, t))− φ(x−, t, u(x−, t))]

}
x+=2x−x−

= 0. (89)

We differentiate twice with respect to u+ and obtain φu+u+ = 0, so that we have φ(x, t, u) =
φ1(x, t)u + φ0(x, t). Substituting back into equation (89) we obtain the final result, namely

ξ = ax + b τ = c1t + c2 φ = (a − c1)u. (90)
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Figure 2. Variable x as a function of n for the lattice (71), xn = L2n
2 + L1n + L0 (L2 = 1/

√
10,

L1 = −π , L0 = 1).

Thus, the difference scheme (82), (83), which is the usual Volterra equation, is invariant under
a four-dimensional group of Lie point transformations. The symmetry algebra is spanned by

P̂0 = ∂t P̂1 = ∂x D̂0 = t∂t − u∂u D̂1 = x∂x + u∂u (91)

(two translations and two dilatations).
The continuous limit of the system (82), (83) is the Euler equation in 1 + 1 dimensions

ut + uux = 0. (92)

Its symmetry group is infinite dimensional and can be obtained by standard techniques [3–8]
(though we have not found it given explicitly in the literature). Its symmetry algebra is spanned
by

X̂(ξ) = ξ(z, u)∂x T̂ (τ ) = τ(z, t, u)(∂t + u∂x)

F̂ (φ) = φ(z, u)(t∂x + ∂u) z = x − ut (93)

where ξ , τ and φ are arbitrary functions of their arguments.
The Volterra equation (82) is certainly not a ‘symmetry preserving’ discretization of the

Euler equation (92) on a uniform lattice. It only preserves the four-dimensional subalgebra (91)
of the infinite-dimensional symmetry algebra (93). Let us mention here that equation (82) is
well known to be a bad numerical scheme for equation (92).
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Figure 3. Variable x as a function of n for the lattice (80), xn = (αn + β)(γ n + δ)−1 (α = √
2,

β = −√
3, γ = 3, δ = −√

3π ).

4.2. A general nearest-neighbour interaction equation

Let us consider the difference scheme

E ≡ utt − F(t, x+, x, x−, u+, u, u−) = 0 (94)

 ≡ x+ − 2x + x− = 0 (95)

where F is an arbitrary smooth function satisfying

(Fu+ , Fu−) 	≡ (0, 0). (96)

A symmetry analysis of a similar class of equations was recently performed for a fixed (non-
transformable) regular lattice [12]. More specifically, the assumption was xn = n, n ∈ Z.

The prolongation formula for the vector field (13) is (14)–(17). Applying it to equation (95)
we obtain that ξ has the form (85), just as for the Volterra equation. Applying the prolongation
to equation (94) we obtain

φtt − τFt − (ax + b)Fx − (ax+ + b)Fx+ − (ax− + b)Fx− − φFu
−φ(+)Fu+ − φ(−)Fu−|E==0 = 0. (97)

We substitute the expression for φtt , φ(+) and φ(−) and set the coefficients of u3
t , u

2
t , u

2
t ux ,

utuxt , uxt and ut equal to zero, after eliminating utt and x+, using equations (94) and (95). The
result is that for any interaction F satisfying condition (96), we have

τ = τ(t) ξ = ax + b φ =
[
τ̇

2
+ α(x)

]
u + B(x, t). (98)
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The as yet unspecified functions τ(t),α(x) andB(x, t) and constantsa andb satisfy a remaining
determining equation, namely

{ 1
2τtttu + Btt − ( 3

2τt − α)F + τFt − (ax + b)Fx − (ax+ + b)Fx+

−(ax− + b)Fx− − [( 1
2τt + α(x))u + B]Fu − [( 1

2τt + α(x+))u+

+B(x+, t)]Fu+ − [( 1
2τt + α(x−))u− + B(x−, t)]Fu−}x+=2x−x− = 0. (99)

The results (98) and (99) agree with those of [12], but are more general. The reason for the
increase in generality is that here the lattice is not fixed a priori and hence the vector field (13)
contains a term proportional to ∂x .

To proceed further, we restrict the interaction F to have a specific form.

4.3. Equation with F = (x+ − x)6(u+ − 2u + u−)−3

Let us consider a special case of the system (94), (95), namely

utt = (x+ − x)6
(u+ − 2u + u−)3

(100)

x+ − 2x + x− = 0. (101)

We substituteF of equation (100) into the determining equation (99) and clear the denominator.
The dependence on u, u+ and u− is explicit and we obtain

τttt = 0 Btt = 0 B(x+, t)− 2B(x, t) + B(x−, t) = 0

α(x)(x+ − x) + 6(ax + b)− 6(ax+ + b) + 3α(x+)(x+ − x) = 0.
(102)

Analysing the system (102) in the usual manner, we obtain a nine-dimensional Lie algebra
with basis

P̂0 = ∂t P̂1 = ∂x D̂1 = 2t∂t + u∂u D̂2 = 2x∂x + 3u∂u

Ĉ = t2∂t + tu∂u Ŵ1 = ∂u Ŵ2 = t∂u Ŵ3 = x∂u Ŵ4 = tx∂u. (103)

A related system was studied earlier [12], namely

ün(t) = [(γn − γn−1)un+1 + (γn+1 − γn−1)un + (γn−1 − γn)un+1]−3 (104)

where γn is any function of n, satisfying γn+1 	≡ γn. If we take γn = n in equation (104) and
x = n in (100), (101) the two systems coincide. The symmetry algebra found in [12] is the
subalgebra {P̂0, D̂1, Ĉ, Ŵ1, Ŵ2, Ŵ3, Ŵ4} of the algebra (103). The elements P̂1 and D̂2 are
absent, since the lattice is fixed. Shifts n′ = n +N are allowed, but are not infinitesimal.

The system (100), (101) has a continuous limit

utt = 1

u3
xx

. (105)

The symmetry algebra of equation (105) coincides with (103), i.e. the system (100), (101) is a
symmetry preserving discretization of equation (105). We emphasize that equation (100) was
obtained as part of a classification of difference equations [12], not in any connection with the
PDE (105).

4.4. Equation without a continuous limit

Let us now consider another special case of the system (94), (95), namely

utt = 1

(u+ − 2u + u−)3
x+ − 2x + x− = 0. (106)
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Substituting for F into equation (99) and proceeding as in section 4.3, we again obtain
a nine-dimensional symmetry algebra. It differs from that given in equation (103) only in
that D2 is replaced by D̃2 = x∂x. For h = x+ − x satisfying h → 0 we find utt finite, but
(u+ − 2u + u−)−3 → ∞, so the limit h→ 0 does not exist.

5. Conclusions

The main questions to be addressed in a program aiming at using Lie group theory to solve
difference equations are the following. (i) How does one define the symmetries? (ii) How
does one calculate the symmetries? (iii) What does one do with the symmetries?

In this paper we define the symmetries as in equation (9), that is we consider only Lie point
transformations that act simultaneously in a difference equation (1) and lattice equation (2). The
fact that the lattice also transforms is in the spirit of Dorodnitsyn’s approach to discretizing
differential equations. In most symmetry studies of difference equations [9–26] the lattice
is fixed and nontransformable, for example, given by the equation x = n, n ∈ Z. For
nontransforming lattices we need to go beyond point symmetries to catch transformations of
interest [17].

Once the class of symmetries that we wish to consider is defined, the matter of calculating
them becomes purely technical. We proposed an algorithm for calculating symmetries in
section 2 (see equations (13)–(18)) and applied it in sections 3 and 4. Symmetry algorithms
for fixed lattices were presented elsewhere [10–14].

Equations (100) and (104) provide good examples of different approaches. The symmetry
algebra (103) of the system (100), (101) happens to coincide with the symmetry algebra
of the continuous limit (105). The symmetry algebra of the related equation (104) was
calculated elsewhere [12]. It is a seven-dimensional subalgebra of the algebra (103), obtained
by dropping P̂1 and D̂2. It was obtained by the ‘intrinsic method’ [11]. The symmetry algebra
of equation (104) can also be obtained from that of the system (100), (101) by taking a specific
solution x = n of equation (101) and reducing the algebra (103) to the one that preserves this
solution.

As far as applications of symmetries are concerned, they are the same for differential
equations and difference ones, in particular, symmetry reduction.

First, consider translationally invariant solutions, i.e. solutions invariant under the
subgroup generated by X̂ = P̂0 − vP̂1 with v constant and P̂0, P̂1 as in equation (103).
We find that the solution, the differential-difference equations (D<E) (100), (101) and the
PDE (106) reduce to

u(x, t) = G(η) η = x + vt (107)

v2Gηη[G(η + h)− 2G(η) +G(η − h)]3 = h6 (108)

v2G4
ηη = 1 (109)

respectively. Surprisingly, the difference equation (108) and the ODE (109) have exactly the
same solution for all values of the spacing h, namely

G = ± 1

2
√
v
η2 + Aη + B v 	≡ 0 (110)

whereA andB are integration constants. Thus, the system (100), (101) is not only a symmetry
preserving discretization. It also preserves translationally invariant solutions.

As a second example, consider solutions invariant under dilations generated by D̂1 of
equation (103).The reduction formula, reduced D<E and reduced PDE are

u(x, t) = t1/2G(x) (111)
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G(x)[G(x + h)− 2G(x) +G(x − h)]3 = −4h6 (112)

and

GG3
xx = −4 (113)

respectively. A particular solution of equation (113) isG(x) = 4(−3)−3/4(x − x0)
3/2. This is

not an exact solution of equation (112), but the solutions of (112) and (113) coincide to order
h2, rather than just h.

As a final example of symmetry reduction, consider the subgroup corresponding to
D̂2 − 3D̂1 of equation (103). The reduction formulae are

u(x, t) = G(η) η = x3t (114)

Gηη = (η
1/3
+ − η1/3)6

η2[G(η+)− 2G(η) +G(η−)]3
η

1/3
+ − 2η1/3 + η1/3

− = 0 (115)

27η3Gηη[3ηGηη + 2Gη]
3 = 1. (116)

While we are not able to solve the ODE (116), or the difference scheme (115), we see that in
both cases we obtain a reduction of the number of independent variables. We mention that this
last reduction would not be obtained on a fixed lattice.

Let us sum up the situation with this particular approach to symmetries of difference
equations.

(1) Lie point symmetries acting simultaneously on given equations and lattices can be
calculated using the reasonably simple algorithm presented in this paper.

(2) Symmetries can be used to perform symmetry reduction for D<E.

Work is in progress on other applications of symmetries of discrete equations, in particular
solving ordinary difference equations.
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